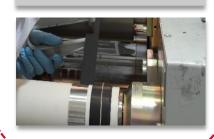
FROM RESEARCH TO INDUSTRY

Occupational exposure during the production, simulated use and end-of-life stages of nanoenabled products for energy harvesting and energy storage

S. Clavaguera, S. Artous, C.Philippot, C. Ducros, D. Locatelli, S. Jacquinot, B. Ross (IOM), M. Van Tongeren (IOM), V. Hase (VSB), B. Stahlmecke (IUTA), T. Kuhlbusch (BAuA), H. Goede (TNO) November 8th, 2016 Univ. Grenoble Alpes, CEA Tech LITEN - DTNM, **PNS**, F-38000 Grenoble, France


THE LEADING PUBLIC FRENCH INSTITUTE FOR ENERGIES & MATERIALS

SOLAR / BUILDING

ELECTROMOBILITY

NANOMATERIALS / LARGE SURFACE ELECTRONICS

THERMAL / BIOMASS / H2

ENERGY/TRANSPORTATION

 Production of nano-enabled electrodes for Li-ion batteries

RECYCLING

 End-of-life of nano-enabled electrodes for Li-ion batteries

ENERGY HARVERSTING

- Production of thermoelectric generators
- Simulated use of TE generators

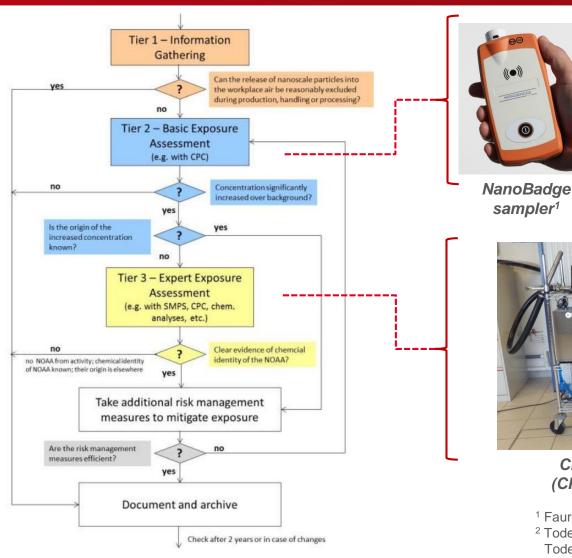
VALUE CHAIN CASE STUDIES

- VC2 Energy sector Nanomaterials for Lithium-Ion batteries
- VC3 Energy / transportation sectors Silicon based nanomaterials for thermoelectric generators

SAFETY VALUE CHAIN CASE STUDY

 Use of carbon-based nanomaterials in electronic goods (with special emphasis on batteries and end-of-life)

FRAMEWORK WITH NANOMATERIAL RELEASES AND EMISSIONS ALONG DIFFERENT LIFE CYCLE STAGES



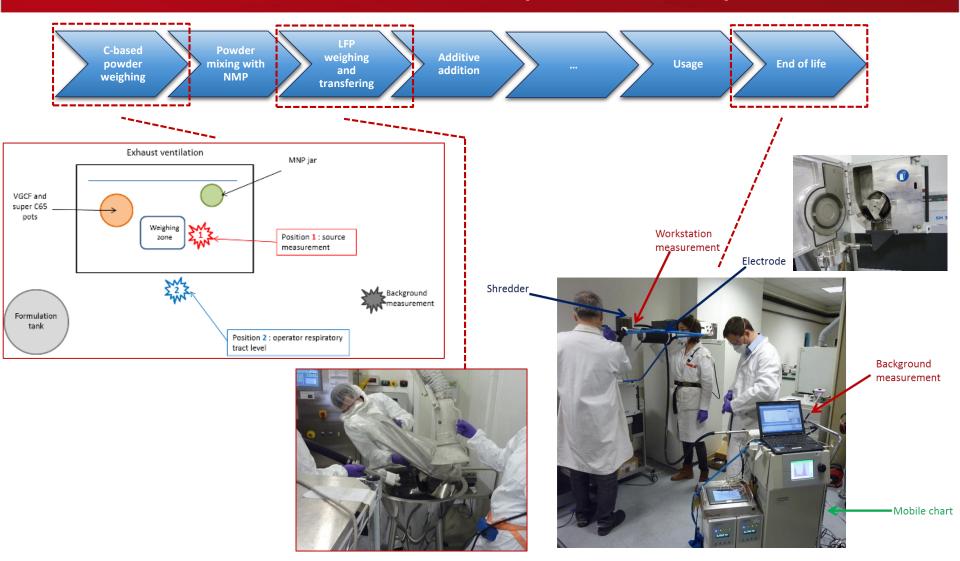
MEASUREMENT STRATEGY: OECD HARMONIZED TIERED APPROACH

Handheld CPC TSI 3007

sampler1

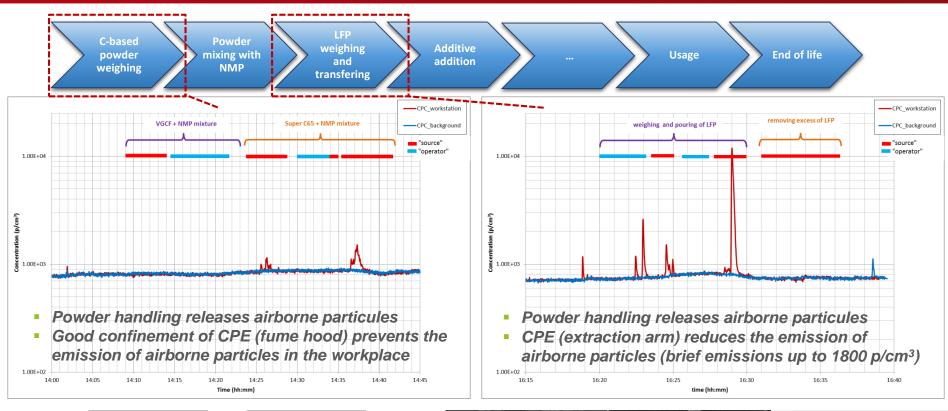
DiSCmini²

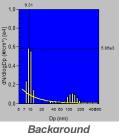
CEA's equipped mobile cart (CPCs, NSAM, FMPS, ELPI ...)

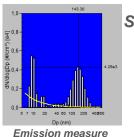


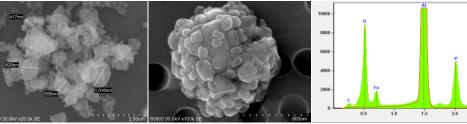
¹ Faure et al., J. Aerosol Sci. (submitted)

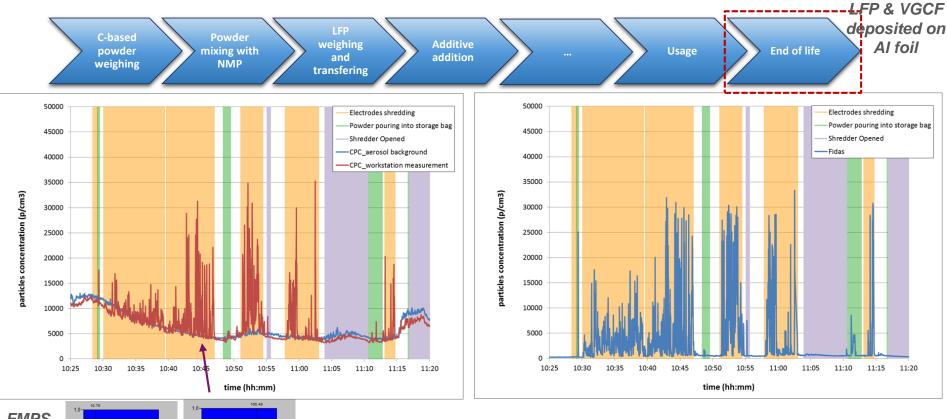
² Todea et al., *J. Aerosol Sci.* **89**: 96-109, 2015; Todea et al., Sci. Total Environ. (close to submission)

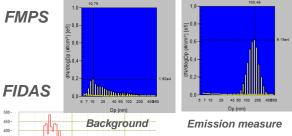









SEM-EDS



Worst case scenario: shredding of 4 kg of electrodes (Li-ion batteries)

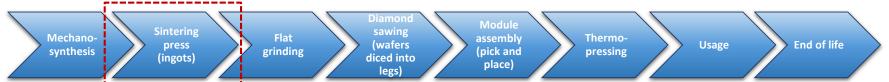
- Significant emission of airborne NOAA during shredding (submicronic particles containing C, Fe, P)
- Moderate release during powder transfer operations
- CPE should be adapted to this non frequent worst case scenario=> confinement

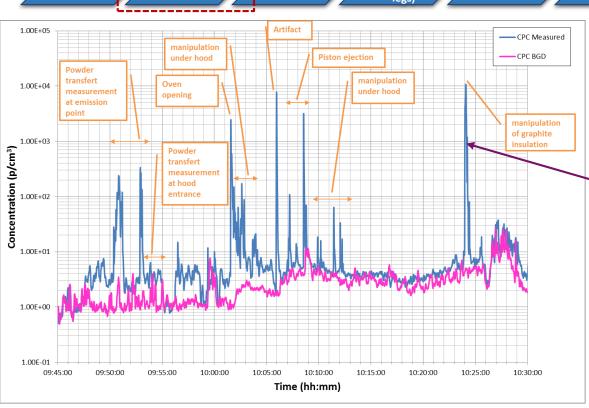
During the early stages on this VC:

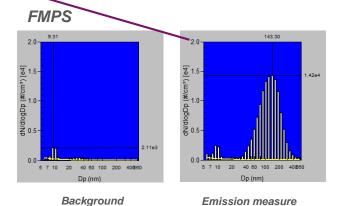
- Powder handling releases airborne NOAA
- Good **confinement** prevents (or reduces) the emission of airborne NOAA
- Worn **PPE** seems appropriate and are recommanded (gloves and disposable forearms, non-woven fabric worksuit and disposable headware, FPP3 masks, safety glasses)

During the end-of-life stage on this VC:

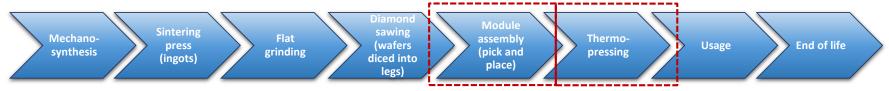
- Shredding as a high-energy mechanical process emits large amounts of submicronic particles
- Powder transfer releases moderate quantities of airborne NOAA
- **Confinement** should be promoted to control the emission during the process (CPE)
- Worn **PPE** seems appropriate and are recommanded (gloves, non-woven fabric worksuit, FPP3 masks, safety glasses). However due to the high amount of generated dust, FPP3 masks were replaced twice.



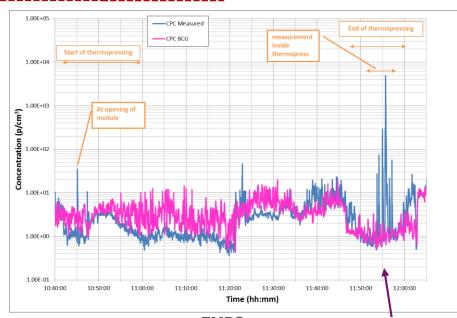


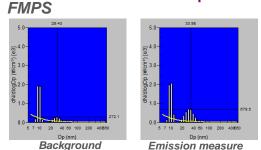


	CPC	Dustmonitor
Phase (source)	(p/cm³)	(p/cm³)
Powder transfert	332	460
SPS equipment opening	2360	50
Manipulation under hood	160	80
Piston ejection	3160	60
Manipulation under hood	60	23
Voluntary manipulation of graphite insulation	10600	2900

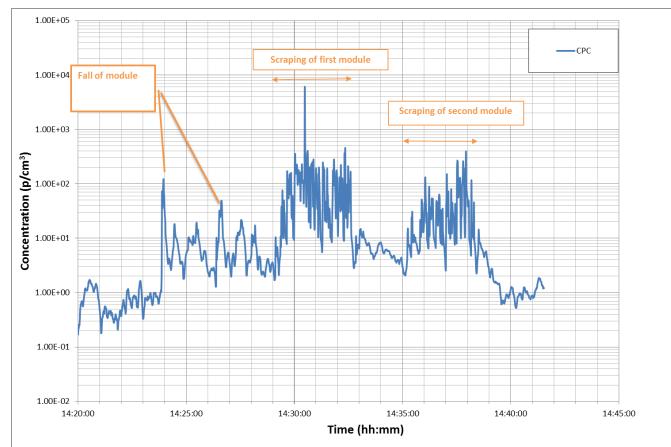


- Process performed in clean room => low background
- The most emissive phase was not expected and not directly related to the manufacturing process => manipulation of graphite material





 No significant release was observed during the two stages monitored except artifacts and thermal effects



Evaluation of the potential release of excess of sintered silver lacquer

- Mechanical shocks releases reduced amounts of NOAA (50 to 100 p/cm³)
- Manual abrasion and scratching releases more significant amounts (up to 6000 p/cm3) of micronic and submicronic particles containing Si, Ge, Ag

A simple encapsulation of the modules could prevent that release during the use phase.

- Except the mechanosynthesis step (bowl milling) which was not monitored, the other VC stages are **not emitting significant amounts of NOAA**
- The first **sintering step tends to aggregate** (fuse) the particles and therefore their subsequent release is unfavoured
- The manipulation of **graphite material emitted** NOAA unexpectedly
- Even the high energy process such as **sawing and grinding are not emitting** airborne aerosols in the vicinity of the equipements. This is certainly due to the **liquid / lubricants used** during the process that prevents the emission in air of the released material. Extra care should be taken during maintenance steps when the liquids and the associated filters are manipulated
- **CPE** and **PPE** at workplace seem adequate in order to protect the operator
- Mechanical sollicitation on the devices showed that in some cases the excess of silver lacquer could be partly removed and released minute amounts of airborne particles. A simple encapsulation of the modules could prevent that release during the use phase.

CONCLUSION AND PERSPECTIVES

Release, emission and exposure:

- Early stages of the VC case studies: Powder handling and transferring releases airborne NOAA
- High energy mechanical processes: wet processed (if possible) are preferred
- Use: **encapsulation strategies** and **sintering steps** when relevant reduces the potential release of NOAA and their subsequent emission
- End-of-life stage: high energy processes and potentially less trained and informed workers on the risks associated with ENMs requires more attention and care

EHS good practices already in place or that could be implemented:

- Good **confinement** prevents (or reduces) the emission of airborne NOAA: **wet processes** or **integrated suction** to the tool used as close as possible to the source are recommended
- Worn **PPE** seems appropriate and are recommanded (nitrile gloves and disposable forearms, non-woven fabric worksuit and disposable headware, FPP3 masks, safety glasses)
- Training sessions to make aware workers of the risks associated to NOAA

The research leading to these results has received funding from the European Research Council under the European Union's FP7 Grant Agreement n.604602 (FutureNanoNeeds project) and Grant Agreement n.310584 (NANoREG project).

Simon Clavaguera simon.clavaguera@cea.fr

Thank you for your attention!

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Grenoble | 38054 Grenoble Cedex T. +33 (0)4 38 78 44 00 | F. +33 (0)4 38 78 51 75

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

Direction de la Recherche Technologique LITEN DTNM - SEN L2N - PNS

Description of the instruments used

Real time monitoring

Counters

CPC, GRIMM

3 nm to 3 μ m

- + rapid
- only part. coutns

Granulometers

FMPS

5 to 560 nm

- + rapid
- sensitivity to low concentration

SMPS

5 to 350 nm

- + sensitivity and accuracy
- Requires 3 min stability of events

Fidas

180 nm to 18 μm

- + large range
- saturation occurs